Annual Drinking Water Quality Report # **Borough of Brooklawn Water Department** For the Year 2024, Results from the Year 2023 We are pleased to present to you this year's Annual Drinking Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. The Borough of Brooklawn Water Department routinely monitors for contaminants in your drinking water according to Federal and State laws. This table shows the results of our monitoring for the period of January 1st to December 31st 2023. The state allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old. Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791). | TEST RESULTS | | | | | | | | | | | | | | |--|-------------------------|---|------------------------------|----------|---------------------|--|--|--|--|--|--|--|--| | Contaminant Violation Y/N | | Level
Detected | Units of
Measure-
ment | MC
LG | MCL | Likely Sour
Contaminat | | | | | | | | | Radioactive Contaminants: | | | | | | | | | | | | | | | Combined Radium
228 & 226
Test results Yr. 2018 | N | 1.5 | pCi/1 | 0 | 5 | Erosion of nat | ural deposits | | | | | | | | Inorganic Contaminants: | | | | | | | | | | | | | | | Barium
Test results Yr. 2021 | N | 0.04 | ppm | 2 | 2 | Discharge of discharge from erosion of nature | metal refineries; | | | | | | | | Copper Test results Yr. 2021 Result at the 90 th Percentile | N | 0.41
No samples exceeded
the action level | ppm | 1.3 | AL=1.3 | Corrosion of household plumbing systems; erosion of natural deposits | | | | | | | | | Cyanide
Test results Yr. 2021 | N | 2.8 | ppb | 200 | 200 | Discharge from steel/metal factories; discharge from plastic and fertilizer factories | | | | | | | | | Fluoride
Test results Yr. 2021 | N | 0.14 | ppm | 4 | 4 | Erosion of natural deposits;
water additive which promotes
strong teeth; discharge from
fertilizer and aluminum factories | | | | | | | | | Lead Test results Yr. 2021 Result at the 90th Percentile | N | ND
No samples exceeded
the action level | ppb | 0 | AL=15 | Corrosion of h
plumbing syste
natural deposit | ems, erosion of | | | | | | | | Disinfection Byproducts: | 1. | | | | _ | | | | | | | | | | TTHM Total Trihalomethanes Test results Yr. 2023 | N | Range = $6 - 6.4$
Highest detect = 6.4 | ppb | N/A | 80 | By-product of disinfection | drinking water | | | | | | | | HAA5
Haloacetic Acids
Test results Yr. 2023 | N | Range = 4.3 - 6
Highest detect = 6 | ppb | N/A | 60 | By-product of disinfection | drinking water | | | | | | | | PFAS Per- and Polyfluoroall | yl Substanc | es: | | | | | | | | | | | | | PFNA Perfluorononanoic Acid Test results Yr. 2023 | orononanoic Acid Hi | | ppt | N/A | 13 | factories. | manufacturing | | | | | | | | PFOA
Perfluorooctane Acid
Test results Yr. 2023 | Y | Range = 3.8 - 15
Highest detect = 15
Average = 4.8 | ppt | N/A | 14 | chemical, and | n industrial,
manufacturing
se of aqueous film | | | | | | | | PFOS
Perfluorooctane Sulfonic Acid
Test results Yr. 2023 | N | Range = ND - 7.4
Highest detect = 2.5
Average = 1.8 | ppt | N/A | 13 | 1 ' | n industrial,
manufacturing
se of aqueous film | | | | | | | | Regulated Disinfectants | Level Det | ected | MRDL | | MRDLG | | Likely Source | | | | | | | | Chlorine
Test results Yr. 2023 | Range = 0.
Average = | 3 – 0.6 ppm
0.5 ppm | 4.0 ppm | | 4.0 ppm
microbes | Water additive | Water additive used to control | | | | | | | | Secondary Contaminant | | Level Detected | Units of Mea | suremen | t | RUL | RUL | | | | | | | | Sodium
Test results Yr. 2021 | _ | 171.4 | ppm | | | 50 | 50 | | | | | | | We exceeded the Recommended Upper Limit (RUL) for Sodium, which is a Secondary Contaminant. Secondary contaminants are substances that do not have an impact on health. Secondary contaminants affect aesthetic qualities such as odor, taste or appearance. Secondary standards are recommendations, not mandates. For healthy individuals, the sodium intake from water is not important, because a much greater of sodium takes place from salt in the diet. However, sodium levels above the Recommended Upper Limit (RUL) may be of concern to individuals on a sodium restricted diet. We exceeded the MCL for (PFNA) Perfluorononanoic Acid during the last quarter of 2022 of which you were notified. We are working with the New Jersey Department of Environmental Protection to resolve this issue. This was based on a Running Annual Average. *Some people who drink water containing PFNA in excess of the MCL over many years could experience problems with their immune system, kidney, liver, or endocrine system. For females, drinking water containing PFNA in excess of the MCL over many years may cause developmental effects and problems with the immune system, liver, or endocrine system in a fetus and/or an infant. Some of these developmental effects can persist through childhood. If you have questions about this report or concerning your water utility, please contact Mike Ostrom – Borough of Brooklawn Water Department at 856-456-2638. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled Borough Council Meetings at Borough Hall, 301 Christiana Street. Meetings are held on the third Monday of each month at 7:00 p.m. Our Drinking Water source is wells. Our three wells draw groundwater from the Lower Potomac-Raritan-Magothy Aquifer System. The New Jersey Department of Environmental Protection (NJDEP) has prepared Source Water Assessment Reports and Summaries for all public water systems. Further information on the Source Water Assessment Program can be obtained by logging onto NJDEP's source water assessment web site at https://www.nj.gov/dep/watersupply/swap/index.html or by contacting NJDEP's Bureau of Safe Drinking Water at (609) 292-5550. You may also contact your public water system. Brooklawn Borough Water Department's Source Water Assessment Summary is included. The Safe Drinking Water Act regulations allow monitoring waivers to reduce or eliminate the monitoring requirements for asbestos and synthetic organic chemicals. Our system received monitoring waivers for two of these types of contaminants, asbestos and synthetic organic chemicals. If you are a landlord, you must distribute this Drinking Water Quality Report to every tenant as soon as practicable, but no later than three business days after receipt. Delivery must be done by hand, mail, or email, and by posting the information in a prominent location at the entrance of each rental premises, pursuant to section #3 of NJ P.L. 2021, c.82 (C.58:12A-12.4 et seq.). #### What are PFOA and PFNA? Perfluorooctanoic acid (PFOA) and Perfluorononanoic Acid (PFNA) are per- and polyfluoroalkyl substances (PFAS), previously referred to as perfluorinated compounds, or PFCs, that are man-made and used in industrial and commercial applications. PFOA was used as a processing aid in the manufacture of fluoropolymers used in non-stick cookware and other products, as well as other commercial and industrial uses based on its resistance to harsh chemicals and high temperatures. PFOS is used in metal plating and finishing as well as in various commercial products. PFOS was previously used as a major ingredient in aqueous film forming foams for firefighting and training, and PFOA and PFOS are found in consumer products such as stain resistant coatings for upholstery and carpets, water resistant outdoor clothing, and grease proof food packaging. Although the use of PFOA and PFOS has decreased substantially, contamination is expected to continue indefinitely because these substances are extremely persistent in the environment and are soluble and mobile in water. More information can be found at: https://www.state.nj.us/dep/wms/bears/docs/2019-4-15-FAQs_PFOS-PFOA-websites-OLA%204-24-19SDM-(003).pdf ## **DEFINITIONS:** In the "Test Results" table you may find some terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions: Non-Detects (ND) - laboratory analysis indicates that the contaminant is not present. Parts per million (ppm) or Milligrams per liter (mg/l) -one part per million corresponds to one minute in two years or a penny in \$10,000. Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000. Parts per trillion (ppt) or nanogram per liter - one part per trillion corresponds to one minute in 2000,000 years, or a single penny in \$10,000,000,000. Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water. Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. <u>Maximum Contaminant Level</u> - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. <u>Maximum Contaminant Level Goal</u> -The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. <u>Secondary Contaminant-</u> Substances that do not have an impact on health. Secondary Contaminants affect aesthetic qualities such as odor, taste or appearance. Secondary standards are recommendations, not mandates. Recommended Upper Limit (RUL) – Recommended maximum concentration of secondary contaminants. These reflect aesthetic qualities such as odor, taste or appearance. RULs are recommendations, not mandates. <u>Maximum Residual Disinfectant Level (MRDL) -</u> The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. <u>Maximum Residual Disinfectant Level Goal (MRDLG)</u> - The level of a drinking water disinfectant, below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination. #### **Drinking Water Sources:** The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams ponds, reservoirs springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals, and in some cases radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in the source water include: - Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - Inorganic contaminants such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and septic systems, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems. - Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and drug administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791. #### **Health Effects of Lead** Lead can cause serious health problems if too much enters your body from drinking water or other sources. It can cause damage to the brain and kidneys and can interfere with the production of red blood cells that carry oxygen to all parts of your body. The greatest risk of lead exposure is to infants, young children, and pregnant women. Scientists have linked the effects of lead on the brain with lowered IQ in children. Adults with kidney problems and high blood pressure can be affected by low levels of lead more than healthy adults. Lead is stored in the bones, and it can be released later in life. During pregnancy, the child receives lead from the mother's bones, which may affect brain development. Contact your local health department or healthcare provider to find out how you can get your child tested for lead if you are concerned about lead exposure. You can find out more about how to get your child tested and how to pay for it at https://www.state.nj.us/health/childhoodlead/testing.shtml. #### Sources of Lead in Drinking Water The Borough of Brooklawn is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. Although most lead exposure occurs from inhaling dust or from contaminated soil, or when children eat paint chips, the U.S. Environmental Protection Agency (USEPA) estimates that 10 to 20 percent of human exposure to lead may come from lead in drinking water. Infants who consume mostly mixed formula can receive 40 percent to 60 percent of their exposure to lead from drinking water. Lead is rarely found in the source of your drinking water but enters tap water through corrosion, or wearing away, of materials containing lead in the water distribution system and household plumbing materials. These materials include lead-based solder used to join copper pipes, brass, and chrome-brass faucets, and in some cases, service lines made of or lined with lead. New brass faucets, fittings, and valves, including those advertised as "lead-free", may still contain a small percentage of lead, and contribute lead to drinking water. The law currently allows end-use brass fixtures, such as faucets, with up to 0.25 percent lead to be labeled as "lead free". However, prior to January 4, 2014, "lead free" allowed up to 8 percent lead content of the wetted surfaces of plumbing products including those labeled National Sanitation Foundation (NSF) certified. Visit the NSF website at www.nsf.org to learn more about lead-containing plumbing fixtures. Consumers should be aware of this when choosing fixtures and take appropriate precautions. When water stands in lead service lines, lead pipes, or plumbing systems containing lead for several hours or more, the lead may dissolve into your drinking water. This means the first water drawn from the tap in the morning, or later in the afternoon if the water has not been used all day, can contain fairly high levels of lead. Please call 856-456-2638 to find out how to get your water tested for lead. Testing is essential because you cannot see, ta In July 2021, P.L.2021, Ch.183 (Law) was enacted, requiring all community water systems to replace lead service lines in their service area within 10 years. Under the law, The Borough of Brooklawn Water Department is required to notify customers, non-paying consumers, and any off-site owner of a property (e.g., landlord) when it is known they are served by a lead service line*. Our service line inventory is available upon request. # Borough of Brooklawn Water Department - PWSID # NJ0407001 The Brooklawn Water Department is a public community water system consisting of 3 active wells. This system's source water comes from the following aquifer: Lower Potomac-Raritan-Magothy Aquifer System. This system can purchase water from the following water system: Bellmawr Water Department ### Susceptibility Ratings for the Borough of Brooklawn Water Department Sources The table below illustrates the susceptibility ratings for the seven contaminant categories (and radon) for each source in the system. The table provides the number of wells and intakes that rated high (H), medium (M), or low (L) for each contaminant category. For susceptibility ratings of purchased water, refer to the specific water system's source water assessment report. The seven contaminant categories are defined at the bottom of this page. DEP considered all surface water highly susceptible to pathogens, therefore all intakes received a high rating for the pathogen category. For the purpose of Source Water Assessment Program, radionuclides are more of a concern for ground water than surface water. As a result, surface water intakes' susceptibility to radionuclides was not determined and they all received a low rating. If a system is rated highly susceptible for a contaminant category, it does not mean a customer is or will be consuming contaminated drinking water. The rating reflects the potential for contamination of source water, not the existence of contamination. Public water systems are required to monitor for regulated contaminants and to install treatment if any contaminants are detected at frequencies and concentrations above allowable levels. As a result of the assessments, DEP may customize (change existing) monitoring schedules based on the susceptibility ratings. | | Pathogens | | | Nutrients | | | Pesticides | | | Volatile
Organic
Compounds | | | Inorganics | | Radionuclides | | | Radon | | | Disinfection
Byproduct
Precursors | | | | |-----------|-----------|---|---|-----------|---|---|------------|---|---|----------------------------------|---|---|------------|---|---------------|---|---|-------|---|---|---|---|---|---| | Sources | Н | M | L | Н | M | L | Н | M | L | Н | M | L | Н | M | L | Н | M | L | Н | M | L | Н | M | L | | Wells - 3 | | | 3 | | | 3 | | | 3 | | | 3 | | 3 | | | 3 | | | | 3 | | 3 | | Pathogens: Disease-causing organisms such as bacteria and viruses. Common sources are animal and human fecal wastes. Nutrients: Compounds, minerals and elements that aid growth, that are both naturally occurring and man-made. Examples include nitrogen and phosphorus. Volatile Organic Compounds: Man-made chemicals used as solvents, degreasers, and gasoline components. Examples include benzene, methyl tertiary butyl ether (MTBE), and vinyl chloride. **Pesticides**: Man-made chemicals used to control pests, weeds and fungus. Common sources include land application and manufacturing centers of pesticides. Examples include herbicides such as atrazine, and insecticides such as chlordane. Inorganics: Mineral-based compounds that are both naturally occurring and man-made. Examples include arsenic, asbestos, copper, lead, and nitrate. Radionuclides: Radioactive substances that are both naturally occurring and man-made. Examples include radium and uranium. **Radon:** Colorless, odorless, cancer-causing gas that occurs naturally in the environment. For more information go to http://www.ni.gov/dep/rpp/radon/index.htm or call (800) 648-0394. **Disinfection Byproduct Precursors**: A common source is naturally occurring organic matter in surface water. Disinfection byproducts are formed when the disinfectants (usually chlorine) used to kill pathogens react with dissolved organic material (for example leaves) present in surface water. #### **Special Notice** Our Chlorine Residual (CR) samples that were taken in January through June of 2023 were inadvertently submitted late by the laboratory to NJDEP. The samples were collected on time and were in compliance. Chlorine residual in drinking water indicates a sufficient amount of chlorine was added initially to inactivate harmful bacteria and/or viruses. It is a measurement of the potability of drinking water. We at the Borough of Brooklawn Water Department work around the clock to provide you with top quality drinking water. We ask that our customers and residents help us protect our water sources, which are the heart of our community, our way of life, and our children's future.